
1

Welcome to the New Era of 
Cloud Computing

Aaron Kimball

The web is replacing the desktop



2

SDKs & toolkits are there

What about the backend?

Image: Wikipedia user Calyponte



3

Two key concepts

• Processing 1000x more data doesn’t have 
to be 1000x harder

• Cycles and bytes, not hardware, are the 
new commodity

Cloud computing is:

(Engineering definition)

Providing services on virtual machines 
allocated on top of a large physical 
machine pool



4

Cloud computing is:

(Business definition)

A method to address scalability and 
availability concerns for large scale 
applications

Cloud computing is:

(The big picture)

Democratized distributed computing



5

Outline

• Introduction

• Large-Scale Data Processing

• Cluster Management

• Conclusions

Outline

• Introduction

• Large-Scale Data Processing

– MapReduce

– The Google File System

– BigTable

– Hadoop

• Cluster Management

• Conclusions



6

What could you do…

…with 1000x as much data & CPU power?

• Scale your business to 1000x more users

• Gather statistics about every user click 

• Improve recommendation systems

• Model better price plan choices

• Simulate 1,000,000 users of a system

Why can’t you do it?

• Large-scale cluster reliability is hard!

– Machines fail

– Hard drives crash

– Network goes down

– Software bugs

– Gremlins?

• Two tasks for two types of people

– Designing reliable, scalable system architecture 

– Writing data processing algorithms



7

An old problem…

Image: Bill Bertram

…At a larger scale

Image © Google, Inc.



8

MapReduce

• Developed at Google in 2003

• Divides performing computation reliably

from computing over large data

• Provides reliable, scalable platform on 
which to develop distributed applications

• Simplifies programming model for 
distributed application writers

– Data flow programming

Example use: Make an index

��������	�


��
��������

��
��
	�


������	�


��
�����
	�
�


��

���	�� ���	��


��
����������

��
����

�����

���	�������

������


	�
������

��������


�����

Algorithm:

1. For each page, get a 
list of all words on 
the page

2. For each word from 
(1), get list of pages 
on which it appears



9

map  (in_key, in_value) -> 

(out_key, intermediate_value)

Map

reduce (out_key, intermediate_value list) ->

out_value

Reduce



10

Building the index



11

Index: MapReduce

map(pageName, pageText):
foreach word w in pageText: 

emitIntermediate(w, pageName);

done

reduce(word, values):
foreach pageName in values: 

AddToOutputList(pageName);

done

emitFinal(FormattedPageListForWord);

Index: Data Flow



12

Other applications

• Classifying instances; machine learning

• Log analysis: click streams, user trends

• Image processing

• A scalable implementation of your 
backend business logic

The Google File System

The distributed file system is what makes 
MapReduce work

– Data spread evenly throughout cluster

– Replicated 3x for redundant storage

– Master machine detects failures and 
rebalances data on the fly



13

Putting it together: active storage

Data automatically distributed to nodes at load time

Automatic parallel processing

Data elements processed locally, in parallel



14

Distributed data, single volume

Output data is written to local disks, and forms a 
single user-accessible volume

A self-healing system

Loss of nodes causes automatic data rebalance



15

Adding structure

• GFS provides storage for very large files

– But structure within files is still slow to use

• Organized database storage still valuable

– How to get scalable storage and 
performance?

What does a database do?

• Stores large amounts of data

– Individual “records” not too large 

– Many records stored per table

• Search over this data (SQL queries)

– Individual record via index (fast)

– Complicated joins of related information

• Consistent modifications (transactions)



16

Web scale database problems

• Number of records gets very large

• Must be split across several machines

– Must be stored reliably, redundantly

– How to keep copies consistent? 

• Must have fast access to individual 
elements, and be able to search it

BigTable

• A Google database layer

• Key idea: divorce organized storage from 
query system



17

Fast single-element access

���
�����	
��	�	�	�	�	�


• High-speed lookup of individual (row, column)

• Selects data needed by online applications

BigTable as a MapReduce input

• Each row is an input record to MapReduce

• MapReduce jobs can sort/search/index/query 
data in bulk



18

BigTable conclusions

• BigTable provides large-scale storage, 
MapReduce provides query backend

• Stores immense amount of structured data

– Uses Google File System for reliability

• Tradeoff: non-standard data access model

Hadoop

• Open source MapReduce + GFS + BigTable

• Java implementation

• Free for commercial use

• Official Apache Software Foundation project



19

Broad industry adoption

Flexible interoperability

• C++/Python: Pipes/Streaming

• Distributed database: HBase

• Machine learning: Mahout

• Performance tracking: Ganglia

• Development environment: Eclipse

• Hosting: Amazon Web Services



20

Benefits of Hadoop

• Open source MapReduce, GFS, BigTable

• Clean programming abstractions

– Allows rapid prototyping of large-scale 
computation

• Scalable active storage infrastructure

– Programs for 10 GB of data work for 10 TB

• Reliable storage of dynamic data

– 3x replication, continuous monitoring

Outline

• Introduction

• Large-Scale Data Processing

• Cluster Management

– Clouds & Virtualization

– Amazon Web Services

– Rightscale

– AWS + Hadoop

• Conclusions



21

Constrained Resources

• Large-data applications are I/O bound

– Hard drive speed is the limiting factor

• Availability of RAM is 2nd level concern

• Raw CPU speed not usually a factor

Typical hardware profile

• “Commodity” server-class machines

– Think performance/watt or per $$

• 4 processor cores (not fastest available)

• 4-8 GB RAM

• 2x500 GB SATA hard drives



22

Traditional service architecture

• Expensive upfront, maintenance costs

• Requires many types of resources

– Machines, power, cooling, bandwidth…

• Does not scale on demand

• Not easily reconfigurable

– Adding virtualization helps with this

What is a cloud?

• Virtualized server pool

• Reconfigures to provide different service 
profiles on demand

• Individual node providing service is 
unimportant



23

Clouds: high-level

�������������

���	

��� 	!�	�
��"������	�

�	���
	����
��
	�

#	���
	�

���	

#	���
	�

���	

#	���
	�

���	

�����������$�	�

���	�%%%

&��'��������
������
�
	�

�	(����
�������
��
	�

)��#	���
	��������	��
��


��	�
����
���	��"�
����

Server architecture



24

Amazon Web Services

• EC2: Elastic Compute Cloud

• S3: Simple Storage Service

• SQS: Simple Queue Service

• SDB: Simple Database

aws.amazon.com

Elastic Compute Cloud

• Provides on-demand processing power

• From $0.10/instance*hour + bandwidth

• Virtual machine images with dynamic or 
static IP addresses



25

EC2 Templates

• EC2 node configuration stored as Amazon 

Machine Image (AMI)

• 100s of stock AMIs available

– Generic Linux distributions

– Hadoop configurations

– Web server / database installations

• Existing AMIs can be customized & saved 
for later reuse

Simple Storage Service

• Virtually infinite storage capacity

• Cost: $0.15/GB*month + bandwidth

– Free high-speed access to/from EC2 nodes

• Provides permanence layer when EC2 
nodes aren’t running



26

Data Security

• Secure data transfer via SSL

• Encrypted storage possible in S3

Simple Queue Service

• Efficient, reliable load distribution layer

• Pay by the message



27

Simple Database Service

• High availability large-store database

• Provides simple SQL-like language

• Designed for interactive/online use

System reliability

• Geographic server diversity through 
availability zones



28

Broad existing user base

Highlight: SmugMug

• Flickr-style online photo hosting

• Entirely stored on S3

They do not own any hard drives!



29

A “web service?”

• Resource provisioning access via SOAP

– Scriptable client-side tools

– Not actually exposed on the web by AWS

Web services for the rest of us

• Web-based interface to AWS

– Provisioning commands

– Monitoring & status

• Parameterizable startup scripts

www.rightscale.com



30

(Rightscale Demo)

Automatic scalability

• Real power of Rightscale is in monitoring

• Scales instances based on demand

• Provides backend reliability in virtual 
environment



31

mysql setup in EC2/S3

*��
	+
����

$�
���

�	�����
�$�
�����
��#)

�����������!��

�	��	�

,���
+	���
��	�
 ,���
+	���
��	�
 ,���
+	���
��	�


-
'
&
�.�
�

�
�


	
�

Google App Engine

• Integrated cloud computing platform

• Compute resources with GFS- and 
BigTable-backed storage

• Limited preview now; check back soon!



32

Using AWS with Hadoop

• Hadoop runs on EC2 nodes

– Templates defined for several versions

• Permanent results storable in S3

• EC2-served frontend retrieves results

– Published via static IP address

Putting it together: FlickrProducts

/����

,��
���.���	��0�

�����0�

1	�
��	���
�

���2���

����
��
	��

�����

�

'�
����

����,��
���
����

�	��
�
�

1	�������
����+

�	���
��	������

�

�	
���	���
����

1����	�

�������.

���������	
���


3��������
�	������	���	�

���!����
�$��	

���
�	

�3�

���2���*	$�#	���
	������
���������
����	

4	�(���

�	��
�



33

FlickrProducts Tour

Images in context on the map



34

Top tags listed per city

Recommendations from Amazon



35

Demo technical points

• Public Amazon, Flickr APIs for input data

• Hadoop pipeline entirely in Java

• Frontend: mysql + PHP + Javascript

• Full system hosted on AWS EC2

– VM Image and database backed by S3

• Rightscale management dashboard

• Conception-to-demo time: two days.

Conclusions

• Powerful new abstractions for large-scale 
data processing systems

– Scalable, reliable, available

– Support rapid development

• Large managed server pools available

– Low overhead

– Eliminate management headaches

– Grow and shrink according to need



36

The landscape 
is changing

Questions?

Aaron Kimball

aaron@spinnakerlabs.com


