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Welcome to the New Era of 
Cloud Computing

Aaron Kimball

The web is replacing the desktop
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SDKs & toolkits are there

What about the backend?

Image: Wikipedia user Calyponte
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Two key concepts

• Processing 1000x more data doesn’t have 
to be 1000x harder

• Cycles and bytes, not hardware, are the 
new commodity

Cloud computing is:

(Engineering definition)

Providing services on virtual machines 
allocated on top of a large physical 
machine pool
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Cloud computing is:

(Business definition)

A method to address scalability and 
availability concerns for large scale 
applications

Cloud computing is:

(The big picture)

Democratized distributed computing
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What could you do…

…with 1000x as much data & CPU power?

• Scale your business to 1000x more users

• Gather statistics about every user click 

• Improve recommendation systems

• Model better price plan choices

• Simulate 1,000,000 users of a system

Why can’t you do it?

• Large-scale cluster reliability is hard!

– Machines fail

– Hard drives crash

– Network goes down

– Software bugs

– Gremlins?

• Two tasks for two types of people

– Designing reliable, scalable system architecture 

– Writing data processing algorithms
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An old problem…

Image: Bill Bertram

…At a larger scale

Image © Google, Inc.
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MapReduce

• Developed at Google in 2003

• Divides performing computation reliably

from computing over large data

• Provides reliable, scalable platform on 
which to develop distributed applications

• Simplifies programming model for 
distributed application writers

– Data flow programming

Example use: Make an index
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Algorithm:

1. For each page, get a 
list of all words on 
the page

2. For each word from 
(1), get list of pages 
on which it appears
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map  (in_key, in_value) -> 

(out_key, intermediate_value)

Map

reduce (out_key, intermediate_value list) ->

out_value

Reduce
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Building the index
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Index: MapReduce

map(pageName, pageText):
foreach word w in pageText: 

emitIntermediate(w, pageName);

done

reduce(word, values):
foreach pageName in values: 

AddToOutputList(pageName);

done

emitFinal(FormattedPageListForWord);

Index: Data Flow
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Other applications

• Classifying instances; machine learning

• Log analysis: click streams, user trends

• Image processing

• A scalable implementation of your 
backend business logic

The Google File System

The distributed file system is what makes 
MapReduce work

– Data spread evenly throughout cluster

– Replicated 3x for redundant storage

– Master machine detects failures and 
rebalances data on the fly
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Putting it together: active storage

Data automatically distributed to nodes at load time

Automatic parallel processing

Data elements processed locally, in parallel
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Distributed data, single volume

Output data is written to local disks, and forms a 
single user-accessible volume

A self-healing system

Loss of nodes causes automatic data rebalance
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Adding structure

• GFS provides storage for very large files

– But structure within files is still slow to use

• Organized database storage still valuable

– How to get scalable storage and 
performance?

What does a database do?

• Stores large amounts of data

– Individual “records” not too large 

– Many records stored per table

• Search over this data (SQL queries)

– Individual record via index (fast)

– Complicated joins of related information

• Consistent modifications (transactions)
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Web scale database problems

• Number of records gets very large

• Must be split across several machines

– Must be stored reliably, redundantly

– How to keep copies consistent? 

• Must have fast access to individual 
elements, and be able to search it

BigTable

• A Google database layer

• Key idea: divorce organized storage from 
query system
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Fast single-element access
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• High-speed lookup of individual (row, column)

• Selects data needed by online applications

BigTable as a MapReduce input

• Each row is an input record to MapReduce

• MapReduce jobs can sort/search/index/query 
data in bulk
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BigTable conclusions

• BigTable provides large-scale storage, 
MapReduce provides query backend

• Stores immense amount of structured data

– Uses Google File System for reliability

• Tradeoff: non-standard data access model

Hadoop

• Open source MapReduce + GFS + BigTable

• Java implementation

• Free for commercial use

• Official Apache Software Foundation project
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Broad industry adoption

Flexible interoperability

• C++/Python: Pipes/Streaming

• Distributed database: HBase

• Machine learning: Mahout

• Performance tracking: Ganglia

• Development environment: Eclipse

• Hosting: Amazon Web Services
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Benefits of Hadoop

• Open source MapReduce, GFS, BigTable

• Clean programming abstractions

– Allows rapid prototyping of large-scale 
computation

• Scalable active storage infrastructure

– Programs for 10 GB of data work for 10 TB

• Reliable storage of dynamic data

– 3x replication, continuous monitoring

Outline

• Introduction

• Large-Scale Data Processing

• Cluster Management

– Clouds & Virtualization

– Amazon Web Services

– Rightscale

– AWS + Hadoop

• Conclusions
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Constrained Resources

• Large-data applications are I/O bound

– Hard drive speed is the limiting factor

• Availability of RAM is 2nd level concern

• Raw CPU speed not usually a factor

Typical hardware profile

• “Commodity” server-class machines

– Think performance/watt or per $$

• 4 processor cores (not fastest available)

• 4-8 GB RAM

• 2x500 GB SATA hard drives
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Traditional service architecture

• Expensive upfront, maintenance costs

• Requires many types of resources

– Machines, power, cooling, bandwidth…

• Does not scale on demand

• Not easily reconfigurable

– Adding virtualization helps with this

What is a cloud?

• Virtualized server pool

• Reconfigures to provide different service 
profiles on demand

• Individual node providing service is 
unimportant
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Clouds: high-level
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Server architecture
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Amazon Web Services

• EC2: Elastic Compute Cloud

• S3: Simple Storage Service

• SQS: Simple Queue Service

• SDB: Simple Database

aws.amazon.com

Elastic Compute Cloud

• Provides on-demand processing power

• From $0.10/instance*hour + bandwidth

• Virtual machine images with dynamic or 
static IP addresses
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EC2 Templates

• EC2 node configuration stored as Amazon 

Machine Image (AMI)

• 100s of stock AMIs available

– Generic Linux distributions

– Hadoop configurations

– Web server / database installations

• Existing AMIs can be customized & saved 
for later reuse

Simple Storage Service

• Virtually infinite storage capacity

• Cost: $0.15/GB*month + bandwidth

– Free high-speed access to/from EC2 nodes

• Provides permanence layer when EC2 
nodes aren’t running
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Data Security

• Secure data transfer via SSL

• Encrypted storage possible in S3

Simple Queue Service

• Efficient, reliable load distribution layer

• Pay by the message
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Simple Database Service

• High availability large-store database

• Provides simple SQL-like language

• Designed for interactive/online use

System reliability

• Geographic server diversity through 
availability zones
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Broad existing user base

Highlight: SmugMug

• Flickr-style online photo hosting

• Entirely stored on S3

They do not own any hard drives!
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A “web service?”

• Resource provisioning access via SOAP

– Scriptable client-side tools

– Not actually exposed on the web by AWS

Web services for the rest of us

• Web-based interface to AWS

– Provisioning commands

– Monitoring & status

• Parameterizable startup scripts

www.rightscale.com
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(Rightscale Demo)

Automatic scalability

• Real power of Rightscale is in monitoring

• Scales instances based on demand

• Provides backend reliability in virtual 
environment
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mysql setup in EC2/S3
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Google App Engine

• Integrated cloud computing platform

• Compute resources with GFS- and 
BigTable-backed storage

• Limited preview now; check back soon!
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Using AWS with Hadoop

• Hadoop runs on EC2 nodes

– Templates defined for several versions

• Permanent results storable in S3

• EC2-served frontend retrieves results

– Published via static IP address

Putting it together: FlickrProducts
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FlickrProducts Tour

Images in context on the map
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Top tags listed per city

Recommendations from Amazon
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Demo technical points

• Public Amazon, Flickr APIs for input data

• Hadoop pipeline entirely in Java

• Frontend: mysql + PHP + Javascript

• Full system hosted on AWS EC2

– VM Image and database backed by S3

• Rightscale management dashboard

• Conception-to-demo time: two days.

Conclusions

• Powerful new abstractions for large-scale 
data processing systems

– Scalable, reliable, available

– Support rapid development

• Large managed server pools available

– Low overhead

– Eliminate management headaches

– Grow and shrink according to need
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The landscape 
is changing

Questions?

Aaron Kimball

aaron@spinnakerlabs.com


